本文作者:linbin123456

成都市灵泉新农投资债权政府债定融

linbin123456 2023-09-01 99
成都市灵泉新农投资债权政府债定融摘要: 🌾省会百强区政信—市场首发—财政局控股主体融资—超千亿AA+发债主体担保—超额应收质押🌾 【川渝最优质区——政信产品成都市灵泉新农投资债权政府债定融】 🌷【基本要素】...
微信号:18621393321
添加微信好友, 获取更多信息
复制微信号

🌾省会百强区政信—市场首发—财政局控股主体融资—超千亿AA+发债主体担保—超额应收质押🌾

【川渝最优质区——政信产品成都市灵泉新农投资债权政府债定融】

🌷【基本要素】:24个月,30万起,9.0%(每5万递增),自然季度最后一日付息
🌷【成立日】:每周三、周五成立计息
🌷【融资人】:LQTZ有限公司,区域财政局百分百控股。其经营状况良好,企业备受地区政府支持建设。
🌷【担保人】:四川省CT集团,AA+发债主体评级 ,总资产1300亿元,实控人为JKQ管委会,公司主要负责对本区域产业配套项目进行开发建设,区域专营性强,获得外部支持力度大,具备较强的担保能力。

🌺【区域介绍】
2022年GDP达到2.08万亿元,全国省会城市排名第二,一般公共预算收入近2000亿。
本区域是该市副中心和东部主城区,2022年实现GDP近2000亿元,一般公告预算收入近100亿。
连续十年位居全省县级行政区首位,连续10多年入围全国综合实力百强区,地方经济实力强劲。
在全国217家国家级经开区中名列前20强,全国综合实力百强区前30强。

政信知识:

新建结构物的施工会改变既有结构物的受力状态,从而对既有结构物产生各种不利影响

    由于新建结构物的受力模式不同于半无限体或无限体中修建单一洞室的一般状况,其初始应力场往往经过多次扰动,施工时将再次进行扰动,表现出极大的变异性

    通过三维仿真计算,模拟了盾构机上作用3种不同推进力时对既有运营隧道变形和主应力的影响,以对是否加固既有运营地铁隧道给出建议,同时对最大推进力作用下随着盾构隧道的开挖对既有地铁隧道轨底倾斜度的影响进行了分析

    分析计算得出的结论对于盾构隧道设计和施工有一定指导意义

    关键词:盾构掘进;交叉隧道;非线性有限元分析;力学行为分析   1引言   随着我国地铁建设的迅速发展,地铁网络不断完善,城市地下空间开发利用的规模也在不断扩大,然而,这也使得新建盾构隧道近距离穿越既有地铁隧道及其他各种地下建筑物的现象愈加普遍

    如何控制盾构隧道近距离穿越地下建筑物所引起的地层位移,以确保既有地下结构设施的正常使用和新建盾构的顺利掘进,对于我国城市地铁建设和地下空间开发利用具有重要的指导作用

       在地下工程近接施工中,新建结构物的施工会改变既有结构物的受力状态,从而对既有结构物产生不利影响

    新建地下结构的受力模式也不同于半无限体或无限体中修建单一洞室的一般状况,其初始应力场往往是经过多次扰动,施工将引起再次扰动,其受力往往是非对称的,表现出极大的变异性

    概括地讲,新建结构物的施工会使围岩从原来的3次应力场演变到5次应力场

    正是这种应力场的演变导致了既有结构和新建结构的受力变异,造成既有结构的安全性和新建工程施工的复杂性问题,这是不可回避和必须加以解决的问题,因此研究其复杂的受力机理和相应对策已成为当务之急

    国内外对盾构隧道以及其近接和交叠等施工力学行为的研究也方兴未艾,进行了诸多研究【1-7】

       本文基于地下工程开挖的力学行为原理和在有限元数值模拟的基础上,对隧道开挖采用“生死单元”进行模拟,并提出采用重叠单元的方法模拟盾构的推进过程

    利用盾构施工引起的地层损失机理,针对北京地铁10号线新建盾构隧道垂直交叉穿过既有1号线运营地铁隧道的工程实例进行三维仿真分析

    根据数值计算结果

    研究了近接盾构隧道施工力学行为,对新建盾构隧道的施工控制以及既有结构的加固措施等提出了有益的建议,并研究了最大推进力作用下随着盾构隧道的开挖对既有地铁隧道轨底倾斜度的影响问题,通过模拟盾构机上作用三种不同的推进力,研究了推进力对既有运营隧道变形和主应力的影响,得出的结论对于盾构隧道的设计和施工有一定的指导意义

       2三维有限元分析模型   2.1有限元模型网格及计算采用的材料参数   新隧道与既有隧道垂直交叉,分析区间的两个既有隧道相距10m,且为运行地铁隧道,截面形状为三心圆截面,衬砌由素混凝土组成

    新隧道从既有隧道下方垂直通过,最近仅相距1.245m,新隧道采用盾构法施工,管片宽度为1.2m

    由于两既有隧道相距为10m,两新隧道相距为80m,故分析只取一条新隧道

    计算采用大型有限元软件ANSYS进行三维开挖分析,三维有限元模型尺寸为长49.2m,宽50m,高50m,经过优化后的网格如图1所示,共有33450个单元,89780个节点,计算所使用的是ANSYS所提供的Solid95三维20节点等参单元

    计算模型约束条件为左右两侧、前后两侧施加水平方向的单向位移约束,下侧施加竖直方向的单向位移约束,上侧为自由端

    施加荷载为重力荷载

    模拟计算中,管片厚度取为30cm,盾壳厚度取为6cm

    模型计算采用的地层材料参数见表1【8】

       2.2开挖过程模拟   既有隧道采用全断面一次性开挖模拟,并且一次性施做衬砌,即先计算初始静力场,然后全断面开挖,接着修筑衬砌

    新隧道每次推进距离为管片衬砌的宽度为1.2m

    由于管片是处于盾壳保护下拼装完毕的,所以模拟开始需先模拟盾壳支护作用,即改变材料为钢壳材料,同时在开挖面上施加压力P来模拟盾构的推进力,后进行开挖,开挖部分为管片和管片内部所在的土体

    当盾构向前行进时盾壳抽出向前,此时盾尾处的管片会露出,需要对盾尾留出的空隙进行注浆填充,以防止上部隧道沉降,此步需要重新激活被杀死的管片单元,改变此部分单元的材料为混凝土材料,同时改变盾尾空隙的材料为填充材料

       在采用“生死单元”模拟盾构开挖过程中,一般是先将土体单元“杀死”,然后在后续荷载步里“激活”被“杀死”的单元,同时改变材料特性

    然而,在模拟盾构开挖过程中,如果采用上述方法,则会使土体在盾壳未支护下已先变形,这与盾构法施工的实际情况差别很大

    因为盾构施工过程中,盾壳的推进(支护)与盾壳所在位置土体的破坏是同时完成的,土体的开挖是在盾壳的保护下进行的,这样,土体的变形和应力状态与实际受力状况有很大差别

    因此,为了很好的模拟盾壳的支护作用,本文提出在盾壳所在土体单元上生成一层与土体单元材料不同的重叠单元

    模拟过程中,先杀死材料为钢材(盾壳)的重叠单元,然后在后续荷载步计算过程中再杀死盾壳所在层的土体单元,同时激活相应位置的盾壳单元,并改变材料特性为盾壳材料

    这样在此荷载步中,在盾壳支护下进行的土体开挖计算更符合实际受力过程

       3计算结果分析   以往的工程计算表明,对于垂直交叉隧道问题,新隧道影响既有隧道的范围一般从距离为8m左右开始影响比较大,即新隧道工作平面距离既有隧道的轴线为8m将既有隧道自身受影响分析取7个截面,每个截面相隔为4m,所取截面1位于两隧道垂直交叉的正上方,沿左右方向每4m,分别取3个截面,即主要分析既有隧道的受影响距离为24m

       3.11号截面随盾构开挖产生的位移和应力分析   由于1号截面恰好位于新建盾构隧道轴线的正上方,即最危险的截面,整个开挖过程中的既有隧道衬砌的最大位移和主应力随开挖推进的变化见图2

    以下仅给出盾构机工作平面上作用的最大推进力P=1MPa时的结果

    图2、图3分别为既有隧道衬砌最大位移、最大水平位移与推进步数关系

    从图2可以看出,整个开挖过程既有隧道衬砌竖向发生了向上的隆起,这主要受盾构工作平面所施加的推进力有关,因此施工时需要严格控制盾构机的施工参数

    另外,左右隧道衬砌的最大竖向位移相差1.5mm左右,不是发生在同一开挖步内,左侧既有隧道衬砌的最大竖向位移要大于右侧既有隧道衬砌的位移,这是由于在同一推进力作用下左右两侧既有隧道的受力不是对称的

    从图3可以看出,左右隧道衬砌的最大水平位移相差1.2mm左右,且右侧最大水平位移发生在第21步,即盾构工作平面推进到两隧道中间的下方,而左侧最大发生在第25开挖步

    两隧道水平位移最大数值并不是都发生在工作平面推进到既有隧道正下方,这是由于盾构的经过时盾构机中的千斤顶反力需要一定的累积才能使得对既有隧道水平位移的影响显现出来,因此左侧既有隧道衬砌的水平位移要大于右侧既有隧道衬砌的水平位移

       由图4可以看出,左右两既有隧道衬砌最大主拉应力的数值均超过了2MPa,且右侧衬砌最大数值大于左侧既有隧道衬砌

    从第9开挖步开始,最大主拉应力数值突变比较大,两既有隧道衬砌最大主拉应力在此步开挖时均超过1.5MPa,这也与一些已经完成的工程所得结论一致,即盾构工作平面距离右侧既有隧道轴线距离10m左右时,盾构机进入了对于既有隧道影响比较大的范围以内,施工过程中当盾构推进到此范围时应严格进行监测,并且实时调整盾构机的参数

    从图4和图5中还可以看出,既有隧道衬砌最大主拉应力和主压应力数值与盾构工作平面距离既有隧道的距离有很大的关系

    当盾构工作平面距离既有隧道9m左右时影响凸现出来

       3.2既有隧道受新盾构隧道开挖产生的影响范围   通过既有右侧隧道受新盾构开挖影响产生的竖向和水平向位移的范围可以分析既有隧道受新盾构隧道开挖产生的影响范围

    从图6和图7(图中箭头方向表示盾构推进步数的增加)可以看出,随着新建盾构隧道的盾构机向既有隧道推进,既有隧道的变形与盾构隧道推进方向一致

    在推进力P=1MPa时,右侧既有隧道衬砌水平位移在第21开挖步时水平位移达到最大为-7.828mm

    另外,在第17开挖步时竖向隆起达到最大,数值为3.294mm,当盾构通过时水平位移和竖向位移均相对于盾构推进方向回落

    从水平和竖向位移两者来综合分析可以看出,既有右侧隧道受开挖所影响的范围在50m左右,即在此范围内右侧既有隧道衬砌的水平位移和竖向位移均超过了1mm

    计算分析还发现,左侧既有隧道衬砌的竖向和水平位移变化规律与右侧既有隧道衬砌变化基本一致

    不同的是,左侧既有隧道衬砌的竖向和水平位移均比右侧大,这主要由于受盾构开挖推进的不对称影响,导致两隧道在开挖过程中受力不对称,故最后变形幅度不同

    3.3刀盘不同推进力对既有隧道产生的影响   由于盾构在推进过程中地质和周边环境的变化,盾构机参数的调整是一个实时的过程

    模拟过程中主要采用推进力P=1,0.5,0.3MPa三种工况

    由图8可看出,当推进力减小一半时右侧既有隧道衬砌的最大竖向及水平位移都有不同程度的减小,具体为最大竖向位移从隆起3.294mm减小到1.665mm,减小幅度大约为49.4%,而最大水平位移从-7.828mm减小到-3.115mm,减小幅度大约为60.2%;当推进力减小70%时竖向位移从隆起表现为沉降-1.278mm,水平位移减小到-1.563mm,减小幅度大约为80%,从位移减小幅度上可以看出推进力是直接影响既有隧道衬砌位移变化的主要因素

       在最不利工况P=1MPa下,既有隧道衬砌的最大主压应力为-4.019MPa

    对于由素混凝土组成的既有隧道衬砌来讲,主压应力在材料允许的范围以内,因此研究主要针对不同推进力作用下,对既有隧道所产生的最大主拉应力进行分析

    由计算分析可知,当推进力减小一半时,既有隧道衬砌所受最大主拉应力明显减小,减小幅度从2.702MPa到2.015MPa

    当推进力减小70%时,既有隧道衬砌最大主拉应力减小到1.559MPa,并可发现既有隧道衬砌所受主拉应力数值超过1.5MPa的区域明显地减小,具体为右侧隧道衬砌的拱腰部分的较大主拉应力消退比较明显,可以得出防止既有隧道衬砌开裂的一个主要措施就是要严格控制施工时的盾构机推进力参数

    3.4轨底倾斜度分析   既有隧道为运营地铁区间隧道,在新建盾构隧道推进穿越既有隧道过程中应对既有地铁隧道轨底倾斜进行实时监测

    分析时将左右两个隧道衬砌钢轨处各取两点作为结果分析的2个点,这主要考虑穿越过程中既有隧道衬砌截面会产生挤压或者倾斜的变形,取2个点来近似模拟钢轨与衬砌结合点的变形

    从图9和图10中可以看出,在新建盾构隧道整体开挖过程中,2个既有隧道轨底竖向位移差数值均在1mm以内

    通过模拟计算可以表明,穿越对于既有运营隧道轨底倾斜影响不是很大,但是需要注意在既有地铁隧道运营期间穿越,一定要慢,并且要连续通过

    4既有隧道加固分析   对交叉隧道的模拟仿真结果表明,不同推进力对于既有隧道的最大主拉应力有很大的影响

    由于既有隧道衬砌由素混凝土组成,使得既有隧道衬砌在盾构大推进力作用下可能产生裂缝,有必要对于既有隧道衬砌进行预加固处理

       根据地下铁道设计规范【9】,采用双线既有隧道加固范围为2m左右,具体为两既有隧道中间土体全部加固,隧道上方及外侧土体2m左右范围加固,隧道底部即与新建盾构隧道之间的交叉土体1.245m范围需要加固

       从图11中可看出,加固前后右侧既有隧道衬砌位移随开挖变化上的规律基本一致,但是变形幅度明显下降,加固后竖向位移降为2.728mm,相对于加固前的下降幅度为17﹪左右

    加固后水平位移降为-4.852mm,下降幅度为34﹪

    从下降幅度上可以看出,在同等推进力作用下加固对于水平位移的影响要远大于竖向位移,这对施工时的控制变形会有一定的借鉴作用

成都市灵泉新农投资债权政府债定融

    对于左线既有隧道,其加固前后衬砌位移的变化规律和右线基本一致

    通过计算分析,还可以得出加固后左、右侧既有隧道衬砌中部外侧最大主拉应力明显要小于加固前,而且整个隧道受盾构开挖影响的主拉应力范围相对于加固前有所减小,见表2

    5结论   通过三维仿真模拟可见,新建盾构隧道的施工对于既有运营地铁隧道有一定的影响,但只要严格进行盾构施工参数的控制,并加强对新建和既有隧道的现场监测,可将新建盾构隧道对既有隧道的影响程度降到最小

       (1)当盾构向前推进时,既有隧道衬砌最大竖向位移发生在新建盾构隧道开挖到既有隧道的正下方

    最大水平位移为沿盾构机前进方向,发生在盾构工作平面超过左侧既有隧道轴线4.8m处

    最大主拉应力和最大主压应力发生在盾构机处在既有隧道的正下方

       (2)随着新建隧道盾构机向既有隧道的推进,既有右侧隧道受开挖所影响的范围在50m左右

    在盾构推进的同时应加强对既有隧道受影响范围的现场监测

       (3)盾构推进力是影响既有隧道衬砌变形和受力状态的主要因素,应在施工过程中严格控制盾构机推进力参数,防止既有隧道衬砌开裂

       (4)通过模拟计算表明,新建盾构隧道整体穿越过程中对运营隧道轨底倾斜影响不是很大

    但是,在穿越既有地铁隧道运营期间,一定要慢,并且要连续通过

       (5)通过对既有隧道的加固分析可知,加固后既有隧道衬砌变形幅度显著下降,且中部衬砌外侧最大主拉应力明显要小于加固前,整个隧道受盾构开挖影响的主拉应力范围也相对减小,这对施工时的控制变形会有一定的指导作用

       参考文献   【1】孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟【J】.同济大学学报,2002,30(4):379―386.   SUNJun,LIUHong-zhou.3Dnumericalsimulationofgroundsurfacesettlementunderoverlappedshieldtunneling【J】.JournalofTongjiUniversity,2002,30(4):379―386.   【2】仇文革.地下工程近接施工力学原理与对策的研究【D】.成都:西南交通大学,2003.   【3】张志强,何川.深圳地铁隧道邻接桩基施工力学行为研究【J】.岩土工程学报,2003,25(2):204―207.   ZHANGZhi-qiang,HEChuan.StudyonthemechanicalbehaviourofametrotunnelconstructionadjacenttoexistingpilefoundationsinShenzhen【J】.ChineseJournalofGeotechnicalEngineering,2003,25(2):204―207.   【4】吴波,高波.地铁区间隧道施工对近邻管线影响的三维数值模拟【J】.岩石力学与工程学报,2002,21(增2):2451―2456.   WUBo,GAOBo.3Dnumericalsimulationoneffectoftunnelconstructiononadjacentpipeline【J】.Chinese   JournalofRockMechanicsandEngineering,2002,21(Supp.2):2451―2456.   【5】廖少明,余炎,彭芳乐.裂缝性低渗透砂岩油田二次加密调整实践盾构近距离穿越相邻隧道施工的数值解析【J】.岩土力学,2004,25(增2):223―336.   LIAOShao-ming,YUYan,PENGFang-le.Numericalanalysisofshieldtunnelingconstructionthroughadjacentobjects【J】.RockandSoilMechanics,2004,25(Supp.2):223―336.   【6】张志强,何川.双线盾构隧道与联络通道复杂结构受力分析【J】.铁道学报,2002,24(6):89―92.   ZHANGZhi-qiang,HEChuan.ResearchonmechanicalbehaviourofconstructionoflinklineandshieldtunnelonNo.2lineofGuangzhoumetro【J】.JournaloftheChinaRailwaySociety,2002,24(6):89―92.   【7】朱合华,丁文其,李晓军.盾构隧道施工力学性态模拟及工程应用【J】.土木工程学报,2000,33(3):98―103.   ZHUHe-hua,DINGWen-qi,LIXiao-jun.Constructionsimulationforthemechanicalbehaviorofshieldtunnelanditsapplication【J】.ChinaCivilEngineeringJournal,2000,33(3):98―103.   【8】北京城建勘测设计研究院有限责任公司.岩土物理力学性质综合统计表【R】.北京:北京城建勘测设计院,2003.   【9】GB50157―92,地下铁道设计规范【S】. 其实控制工程造价最重要的阶段其实是工程方案设计阶段

    对于工程建设而言,资金投入的多少以及资金预算都是要根据设计工程师最后所设计出来的结果而定,因此,改善设计方法,优化设计结果,是实现工程建设投资的重要途径

    然而,我过建筑行业的设计存在着不同的问题,这就需要我们不断深入解决,确保设计起到优化效果

     关键词:优化设计工程建设投资控制 引言 同样的一个工程,优化后的方案和原方案相比,除了在使用功能上有明显的优势外,对工程建设造价的影响更是起着举足轻重的作用

    由于设计阶段所涉及到的方面比较多,因此设计阶段的质量对于造价控制管理十分关键

    加强造价控制管理就应该把要工作重点转移到建设前的设计阶段中去,需要合理地设计方案,让方案具有科学性,不仅减少了资源的浪费,也保证了施工的进度,间接地实现造价管理

     1设计方案在建设工程项目管理中的作用 1.1影响建设投资的金额 工程项目建设一共分为了项目决策、项目设计和项目实施三个阶段,实现设计方案的优化也必须从这三个方面进行

    工程设计人员将方案进行优化后,最大的意义就是在保证工程质量的前提下,将建设投资的金额降至最低点,从而达到质量和资金双赢的目的

    在设计过程中,首要考虑的问题就是建筑的材料选择,这也是建设投资中的一项重要开支

    其次就是建筑的结构设计,建筑的总体结构就会对建设投资有着不晓得影响,因为结构决定了选材,两着之间是相互联系的

     1.2影响施工进度与质量 对于一个建筑工程来说,设计图纸就是施工人员在施工过程中的依据,施工技术人员是根据工程师所给的图纸来进行合理的施工安排

    因而,一旦设计的方案或者图纸出现质量问题,肯定会给施工带来困难,造成施工返工、停工的现象,这无疑是人力、物力、财力上的浪费

    或者设计工作如果不全面,即使建筑造好依旧会存在很多问题,严重的将会造成建筑不能正常使用,就等于是白白建造了,这对于建设投资单位来说将是巨大的经济损失

     1.3影响经常性费用开支 是否将设计方案进行优化,不仅影响到了项目投资单位的一次性资金投入,也会给工程使用阶段的经常性费用带来一定的影响

    具体如:暖通、照明的能源消耗、清洁、保养、维修费等

    一次性投资与经常性费用在某种情况下存在着有反比关系,如果设计人员能够采取优化设计的方法,就又可能将这种反比关系进行有效结合,这样就能从整体上控制建设项目的投资

    具体如:玻璃幕墙的办公楼属于高耗能建筑物,整个空间必然需要白天照明和中央空调来调节办公环境,在其全寿命过程中如果算下每年的开支,这笔费用可想而知

     2优化设计实施存在的问题 2.1业主优化设计意识不强 业主方面,很多业主只重视工程投资建设的价格高低,以及自己的投资成本,常常只把眼光放在了施工过程上面

    这就忽略了设计在项目工程的作用,业主缺乏优化设计的概念,没有对优化设计的利益进行详细地分析,不能充分认识搭配优化设计对建设投的重要性等等,这些问题都是业主完全把重点放在施工环节而造成的

    目前,业主往往把投资的控制重心放在施工环节上,而对设计环节重视不够

    另外,业主只重视建筑的外观,一味的追求新颖、独特,对优化设计只字不提,这些完全都是因为业主缺乏优化这一思想意识而引起

     2.2运行机制过程不够完善 马克思主义哲学认为失误、事物是普遍联系的,联系具有客观性,旨在强调任何事物都具有客观性

    一个优化设计方案的顺利进行,是需要各个方面的因素保证才能实现的

    首先,优化设计的运行需有良好的机制作为保证,这种机制主要指的是社会主义市场经济体制,我故市场经济现在尚未规范完毕,仍遗留下不少问题,如假冒伪劣、非法竞争、弄虚作假等等,这些将阻碍工程投标、招标的推广和深化,加上经营者多数只重视经济利益,造成优化不优价的结果,这些都归根于运行机制的的不完善

     3实现优化设计的有效途径 3.1主管部门强对市场监控 实现设计的优化主要是以政府主管部门有效监控作为前提,对于项目工程,主管部门应该的从设计单位的资质、设计收费、建设手续、规范的执行情况、新材料新工艺等方面进行定期、严格的监控

    建设单位的主管部门需要积极配合政府的主管部门进行审查工作,对设计的结果从技术、经济、施工等三大方面审核设计方案的有效性

    也应加强设计市场的管理力度,对于资质管理、人员注册、设计招标、图纸审查等环节必须严格把关,杜绝黑市设计现象的存在,充分发挥出主管部门应有的智能,实现规范设计、标准设计、优化设计,让工程建设投资能够被合理地控制

     3.2做好推广优化设计工作 政府除了需要做好自身的管理工作外,还需不断完善自己的职能,发挥出自己的宣传能力

    政府可以加强对优化设计的宣传力度,大力倡导建设单位和工程单位积极采纳经过优化的设计方案

    政府部门可以从优化设计所带来的经济利益、以及其它优点等方面进行宣传,提高优化设计在人们大脑中的概念,树立优化接呢个意识,这样一来越来越多的建设单位就会逐渐采纳优化设计的方案,久而久之就会形成一种设计习惯

    主管部门也可加强设计监理人才的培训考核和注册,制定设计监理工作的责职、收费标准等;同时,通过行政手段来保证设计监理的广度,为设计监理的社会化提供条件口

     3.3完善相应法律法规制度 “不以规矩,不成方圆”,任何一项新事物的推广必须依照国家的相关法律法规进行,只有在受到法律保护的情况下,这种新事物才能被人们所接受

    优化设计作为一种新型的设计理念和方法,必须要借助于法律的保护才能又发展的空间

    我股目前出台了《合同法》、《建筑法》、《招投标法》、《建筑工程质量管理条例》等法律文件,为设计的监督监理工作提供保障

    立法机关应该根据社会市场的需要随时调整或制定出新的政策以满足建筑行业的需要,如设计监理、设计招投标、设计市场及价格管理等,这样一来就为优化设计的推广创造了良好的空间平台

     3.4注意设计工作的综合性 进行项目工程的优化设计必须要全面,综合,方方面面都要考虑到

    这主要是因为工程建设投资是一项巨大的耗资工程,所设计到的东西比较复杂,因此必须进行总法规和考虑,不能仅仅为了节约资金投入而忽视了设计的优化作用

    要正确处理技术与经济的对立统一是控制投资的关键环节

    设计中既要反对片面强调节约,忽视技术上的合理要求,使项目达不到功能的倾向,又要反对重视技术,轻经济、设计保守浪费的现象

     4结语 总之,在工程项目设计阶段实现设计的优化,对于投资建设有着重大的意义,既能实现资源优化配置,又能保证良好的经济效益,在建设投资上实现双赢,优化观念在建筑行业的发展中将得到越来越多的体现

     参考文献: 【1】张士玉.战略管理【M】.北京:中国财政经济出版,2002. 【2】从培经.实用工程项目管理手册【M】.北京:中国建筑工业出版社,1999. 【3】赵坚.现代管理经济学【M】.北京:中国铁道出版社,2002. 【4】潘永明.建设项目投资控制【M】.北京:地震出版社,2003.    

成都市灵泉新农投资债权政府债定融

文章版权及转载声明

作者:linbin123456本文地址:http://estem.org.cn/post/61161.html发布于 2023-09-01
文章转载或复制请以超链接形式并注明出处定向政信网

阅读
分享